Structural Versatility of Peptides from $\mathbf{C}^{\alpha, x}$-Disubstituted Glycines. Preferred Conformation of the $\mathbf{C}^{\alpha, x}$-Dibenzylglycine Residue

Giovanni Valle, Marco Crisma, Gian Maria Bonora, and Claudio Toniolo *
Biopolymer Research Centre, CNR, Department of Organic Chemistry, University of Padova, 35131 Padova, Italy
Francesco Lelj
Institute of Chemistry, University of Basilicata, 85100 Potenza, Italy
Vincenzo Barone and Franca Fraternali
Department of Chemistry, University of Naples, 80134 Naples, Italy
Paul M. Hardy and Andrew Langran-Goldsmith
Department of Chemistry, University of Exeter, Exeter EX4 4QD
Hernani L. S. Maia
Centre of Pure and Applied Chemistry, University of Minho, 4700 Braga, Portugal

The preferred conformation of the $\mathrm{C}^{\alpha, \alpha}$-dibenzylglycine residue has been assessed in selected derivatives and small peptides by conformational energy computations, 'H NMR spectroscopy, and X-ray diffraction. Conformational energy computations on the $\mathrm{C}^{\alpha, \alpha}$-dibenzylglycine monopeptide, Ac-Dbz-NHMe, strongly support the view that this $\mathrm{C}^{\alpha, \alpha}$-symmetrically disubstituted residue is conformationally restricted and that its minimum energy conformation falls in the fully-extended $\left(\mathrm{C}_{5}\right)$ region. The results of the theoretical analysis are in agreement with the solution and crystalstate structural propensity of Tfa-Dbz-Gly-DBH, Tfa-Dbz-L-Phe-OMe and its benzyl ester analogue, $m-\mathrm{ClAc}-\mathrm{Dbz}-\mathrm{OH}, \mathrm{Z}-\mathrm{Gly}$-Dbz-Gly-OH and its t-butyl ester derivative. The implications for the use of the Dbz residue in designing conformationally constrained analogues of bioactive peptides are briefly discussed.

The significance of $\mathrm{C}^{\alpha, \alpha}$-disubstituted glycines has been recently recognized in connection with the design and synthesis of conformationally restricted analogues of bioactive peptides. ${ }^{1-4}$ Recent studies suggest that the $\mathrm{C}^{\alpha, \alpha}$-dimethylglycine (α-aminoisobutyric acid, Aib) residue strongly prefers folded backbone conformations in the $3_{10} / \alpha$-helical region of the φ, ψ space ($\varphi=$ $\pm 60 \pm 20^{\circ}, \psi= \pm 30 \pm 20^{\circ}$) (for a recent survey see ref. 3); by contrast, $\mathrm{C}^{\alpha, \alpha}$-diethylglycine (Deg) ${ }^{5-7}$ and $\mathrm{C}^{\alpha, \alpha}$-di-n-propylglycine (Dpg) ${ }^{5,8,9}$ residues, with longer side chains, preferentially adopt the fully-extended C_{5} conformation $\left(\varphi, \psi c a .180^{\circ}\right.$, 180°). ${ }^{3}$
As part of a programme aimed at investigating the conformational properties of $\mathrm{C}^{\alpha, \alpha}$-symmetrically disubstituted glycyl residues we describe here the structural characterisation of $\mathrm{C}^{\alpha, \alpha}$-dibenzylglycine (Dbz ; earlier abbreviated as Bphe, Dbg, or $\mathrm{Db}_{\mathbf{z}} \mathrm{g}$) in simple derivatives and peptides by using conformational energy computations, ${ }^{1} \mathrm{H}$ NMR spectroscopy and X -ray diffraction. In addition to model compounds, the general potential of this residue as a Phe replacement has been demonstrated by the synthesis of enkephalinamide, bradykinin, and substance P analogues. ${ }^{10-15}$

Experimental

Materials.-The synthesis and characterisation of Tfa-Dbz-L-Phe-OMe (2) (Tfa, trifluoroacetyl; OMe, methoxy), ${ }^{14}$ m-ClAc-Dbz-OH (4) (m-ClAc, monochloroacetyl), ${ }^{11}$ Z-Gly-Dbz-Gly-OH (5) (Z, benzyloxycarbonyl), ${ }^{11}$ and Z-Gly-Dbz-Gly$\mathrm{OBu}^{\mathrm{t}}(6)\left(\mathrm{OBu}^{\prime}, \mathrm{t}\right.$-butoxy) ${ }^{11}$ have already been reported.

Tfa-Dbz-Gly-DBH (1) (DBH, $\mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-Dibenzylacylhydraz-ido).-Glycine (N^{\prime}, N^{\prime}-dibenzyl)hydrazide $\quad(0.714 \mathrm{~g}, \quad 2.64$ $\mathrm{mmol})^{16}$ and 2-trifluoromethyl-4,4-dibenzyloxazolin-5-one (1.0 $\mathrm{g}, 3 \mathrm{mmol})^{13}$ were stirred in acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ for 15 h. The solvent was removed and the residue taken up in ether
and washed with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ citric acid ($2 \times 20 \mathrm{~cm}^{3}$), water (20 cm^{3}), $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$, and water $\left(20 \mathrm{~cm}^{3}\right)$. The ether solution was then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and the solvent evaporated. The residual pale yellow oil (1.62 g) crystallised on standing. Recrystallisation from methanol-diethyl ether gave colourless crystals ($1.35 \mathrm{~g}, 65 \%$), m.p. $150-151^{\circ} \mathrm{C}$ (Found: C, $68.0 ; \mathrm{H}, 5.4 ; \mathrm{N}, 9.4 \% . \mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 67.8 ; \mathrm{H}, 5.5 ; \mathrm{N}$, 9.3\%).

Tfa-Dbg-L-Phe-OBzl (3) (Bzl, benzyloxy).-2-Trifluoro-methyl-4,4-dibenzyloxazolin-5-one (1.0 g), ${ }^{13}$ L-phenylalanine benzyl ester tosylate ($1.60 \mathrm{~g}, 3.75 \mathrm{mmol}$), and triethylamine (0.38 $\mathrm{g}, 3.75 \mathrm{mmol}$) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ for 2 days at $20^{\circ} \mathrm{C}$. Evaporation of the solvent gave a colourless glass which was taken up in ethyl acetate and the solution was washed as in the above preparation. The solution was dried and evaporated to leave a white solid (1.60 g). Recrystallisation from ethyl acetate-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) gave fine needles (1.44 g , 82%), m.p. $127-128^{\circ} \mathrm{C}$ (Found: C, 69.5; H, 5.4; N, 4.7%. $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 69.4 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.8 \%$).

Conformational Energy Computations.-The standard geometries of Scheraga and co-workers ${ }^{17,18}$ were used for the acetamido and methylamido end groups, while the average X ray data of the present work were the source of the geometrical parameters of the Dbz residue. Empirical two-body potential functions (AMBER ${ }^{19}$ force field) were used for describing torsional, steric, electrostatic, and \mathbf{H}-bond interactions. Steric and electrostatic interactions between 1-4 atoms were always halved. ${ }^{17-19}$ A value for the relative permittivity, ε_{r}, of 1 was assumed in all calculations. The atomic charges are generally similar to the original AMBER ones but they are derived by empirical rules, thus avoiding any preliminary quantummechanical calculation. ${ }^{20}$ In particular, following the suggestion of Lifson and co-workers ${ }^{21}$ and some quantum mechanical

Table 1. Crystal data for Tfa-Dbz-Gly-DBH (1) methanol solvate, Tfa-Dbz-L-Phe-OMe (2), Tfa-Dbz-L-Phe-OBzl (3), m-ClAc-Dbz-OH (4), and Z-Gly-Dbz-Gly-OH (5).

	Compound				
	(1)	(2)	(3)	(4)	(5)
Molecular formula M (amu)	$\begin{aligned} & \mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{CH}_{4} \mathrm{O} \\ & 633.7 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \\ & 512.5 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \\ & 585.6 \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNO}_{3}$ 330.8	$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$ 503.6
Crystallized from	$\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Et}$-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$
$D_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.24	1.26	1.30	1.29	1.28
Crystal system	Triclinic	Orthorhombic	Orthorhombic	Triclinic	Monoclinic
Space group	PI	$P 21_{1}{ }_{1}{ }_{1}$	P2, $21{ }_{1}{ }_{1}$	$P \mathrm{I}$	C2/c
Z	2	4	$4{ }^{1}$	2	8
a / \AA	14.227(2)	19.374(2)	19.828(2)	12.669(2)	31.311(3)
b / \AA	11.571(2)	12.974(2)	12.876(2)	9.628(1)	10.869(1)
c / \AA	11.351(2)	10.756(2)	11.763(2)	7.683(1)	17.949(2)
$\alpha /{ }^{\circ}$	111.3(10)			102.0(1)	17.94(2)
$\beta{ }^{\circ}$	76.1(1)			96.1(1)	121.6(1)
$\gamma /^{\circ}$	106.3(1)			109.4(1)	
V / \AA	1651.0	2703.6	3003.2	848.9	5202.7
$\mu\left(\mathrm{Mo}-\mathrm{K}_{a}\right) / \mathrm{cm}^{-1}$	0.56	0.61	0.60	1.96	0.55
Solved by	MULTAN $80{ }^{27}$	SHELX S-86 ${ }^{28}$	MULTAN 80	MULTAN 80	SHELX S-86
No. of unique reflections	7706	2699	4046	4102	4984
No. of observed ${ }^{\text {a }}$ reflections	4211	1614	2191	2384	1825
\boldsymbol{R}	0.062	0.054	0.058	0.064	0.098
$R_{w}{ }^{\text {b }}$	0.073	0.059	0.066	0.064	0.112
S	1.37	1.01	0.96	0.75	1.40
H-atoms	Not refined	Refined	Refined	Not refined	Not refined

${ }^{a} F \geqslant 7 \sigma(F)$ for (1), (2), and (5); $F \geqslant 6 \sigma(F)$ for (3) and (4). ${ }^{b} w=1 \mid\left[\sigma^{2}(F)+X F^{2}\right]$, where $X=0.003$ for (1), 0.004 for (2), 0.0066 for (3), and 0.001 for (5). For (4), $w=1$.
computations, ${ }^{22}$ electroneutrality was imposed on the carbonyl and methylamino moieties and a constant charge of 0.03 was attributed to all the aliphatic hydrogen atoms. The charge on the oxygen (-0.5) was the same as in AMBER, but the charge on the nitrogen was slightly reduced from the original value in order to obtain a better relative stability of the fully extended conformation. ${ }^{23}$ Within the aromatic moieties all the $\mathrm{C}-\mathrm{H}$ units were assumed to be electroneutral with charges of 0.12 for the hydrogen atoms and -0.12 for the carbon atoms. Charges of -0.10 and 0.05 were adopted for the C^{β} atoms and $H-\mathrm{C}^{\beta}$ atoms, respectively, while that for the C^{α} atom, computed in order to achieve electroneutrality, turned out to be 0.04 , close to the AMBER value for glycine. Moreover, a charge of 0.05 was assumed for the C^{γ} atoms.

Conformational energies are expressed as $\Delta E=E-E_{0}$, where E_{0} is the energy of the most stable conformation. All computations were performed using the efficient package ICER ${ }^{24}$ which is able to significantly reduce the computational time by means of a preliminary topological analysis. In fact, only energy differences between successive points were computed, taking into account only interactions between atoms whose relative positions are modified. Furthermore, interactions depending on a single dihedral angle (e.g., torsional terms and 1,4-interactions) were calculated at the beginning of the computation only and stored for subsequent use. Finally, the program has a user friendly interface for the input of the polypeptide sequences and allows for the use of several force fields. The sign definition of the torsion angles is in agreement with the IUPAC-IUB rules. ${ }^{25}$

The conformational space was mapped in intervals of 30° for the φ, ψ, and χ torsion angles with ω angles fixed at 180°. The energy minima were fully optimized in the torsional subspace

[^0]using the Newton-Raphson method ${ }^{26}$ implemented in the ICER package.
${ }^{1} \mathrm{H}$ NMR Spectra.- ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Bruker model AM 400 spectrometer. Measurements were carried out in deuteriochloroform ($99.96 \%{ }^{2} \mathrm{H}$; Merck) and in dimethyl sulphoxide $\left(99.96 \%{ }^{2} \mathrm{H}_{6}\right.$; Fluka) with tetramethylsilane as the internal standard. The free radical TEMPO ($2,2,6,6-$ tetramethylpiperidinyl-1-oxy) was purchased from Sigma.
X-Ray Diffraction.-X-Ray diffraction data for compounds (1)-(5) were collected with a Philips PW1100 four-circle diffractometer using graphite-monochromatised Mo- K_{α} radiation ($\lambda=0.7107 \AA$). The $\theta-2 \theta$ scan mode up to $2 \theta=56^{\circ}$ was used. Intensities were corrected for Lorentz and polarization effects and put on an absolute scale. No absorption corrections were applied. The crystallographic data are summarized in Table 1. Lists of bond lengths, bond angles and torsion angles, the final positional parameters of the nonhydrogen atoms along with equivalent and anisotropic thermal factors have been deposited at the Cambridge Crystallographic Data Centre.*

Results and Discussion

Conformational Energy Computations.-Table 2 gives the conformational energy computation data for the Dbz monopeptide, Ac-Dbz-NHMe (Ac, acetyl; NHMe, methylamino). The most stable conformation (I) is the flat, fully-extended (C_{5}) structure ${ }^{3,29}\left(\varphi_{1}=180.0^{\circ}, \psi_{1}=180.0^{\circ}\right)$ with the side-chain torsion angles $\chi^{1,1}, \chi^{2,1}, \chi^{1,2}$, and $\chi^{2,2}$ having values of -40.6°, $-73.7^{\circ}, 40.6^{\circ}$, and 73.7°, respectively (the two side chains of each residue are each the mirror image of the other). Higher energy ($\Delta E=4.0-8.3 \mathrm{kcal} \mathrm{mol}^{-1}$) minima occur in the $\alpha / 3_{10}$ helical ${ }^{3}\left(\varphi_{1}=-60.0^{\circ}, \psi=-33.0^{\circ}\right)$ and distorted $C_{7}{ }^{29}\left(\varphi_{1}=\right.$

Table 2. Computed torsion angles $/{ }^{\circ}$ and energies $/ \mathrm{kcal} \mathrm{mol}^{-1}$ for Ac-Dbz-NHMe.

Conformation	φ_{1}	Ψ_{1}	ω_{0}	ω_{1}	$\chi^{1.1 a}$	$\chi^{2.1 a}$	$\chi^{1,2 a}$	$\chi^{2,2 a}$
(I)	180.0	180.0	180.0	180.0	-40.6	-73.7	40.6	73.7
(II)	-60.0	-33.0	-179.0	177.0	146.4	82.3	49.0	87.5
(III)	179.5	-35.4	-179.9	180.0	-35.5	-73.7	51.7	85.0
(IV)	-59.4	102.6	-175.6	170.8	63.3	-72.2	17.4	8.0

${ }^{a}$ On $\chi^{i, j}$ the index i refers to the bond about which the torsion angle is calculated ($i=1$ indicates the $C_{1}{ }^{a}-C_{1}{ }^{\beta}$ bond, while $i=2$ indicates the $C_{1}{ }^{\text {b }}-\mathcal{C}_{1}{ }^{\gamma}$ bond). On the other hand, the index j refers to benzylic side chain 1 or 2 bonded to the same $C_{1}{ }^{\alpha}$; on the two ortho (C^{δ}) carbon atoms in each ring, the one chosen is that which gives an absolute value of $<90^{\circ}$ for the torsion angle $\mathrm{C}_{1}{ }^{\alpha}-\mathrm{C}_{1}{ }^{\beta}-\mathrm{C}_{1}{ }^{\gamma}-\mathrm{C}_{1}{ }^{\boldsymbol{\delta}}$.

Table 3. NH chemical shifts and temperature coefficients ${ }^{a}$ of Dbz peptides in CDCl_{3} solution.

Compound	Concentration/ $\mathrm{mmol} \mathrm{dm}{ }^{-3}$	$\begin{aligned} & \text { N-terminal } \\ & \mathbf{N H}^{\boldsymbol{b}} \end{aligned}$	$\Delta \delta / \Delta T^{c}$	Internal $\mathbf{N H}^{b}$	$\Delta \delta / \Delta T^{c}$	C-terminal $\mathbf{N H}^{b}$	$\Delta \delta / \Delta T^{c}$
Tfa-Dbz-L-Phe-OMe	11.1	7.63				6.25	
	1.4	7.62	-2.1			6.19	-0.5
Tfa-Dbz-Gly-DBH	10.4	7.62		6.80		$6.87{ }^{\text {d }}$	
	0.9	7.61	-0.3	6.67	-3.2	6.31	-3.2
Z-Gly-Dbz-Gly-OBu ${ }^{\text {l }}$	10.4	5.25		6.69		6.54	
	1.1	5.24	-3.3	6.69	-1.0	6.53	-2.4

${ }^{a}$ Temperature range $25-55^{\circ} \mathrm{C}$. ${ }^{b}$ In ppm (with tetramethylsilane as the internal standard). ${ }^{c}$ In $10^{3} \mathrm{ppm} \mathrm{k}{ }^{-1}$. ${ }^{d}$ Approximate value, due to overlapping of the aromatic signals.

Figure 1. Complete (400 MHz) ${ }^{1} \mathrm{H}$ NMR spectrum of Tfa-Dbz-L-PheOMe (2) in CDCl_{3} solution ($1.4 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$).
$-59.4^{\circ}, \psi_{1}=102.6^{\circ}$) regions [conformations (II) and (IV), respectively].

The relative stability of the different conformations is governed by interactions between arylalkyl side chains and the backbone. In particular, the H -bond contribution, operative in the C_{7} structure, is not sufficient to overcome the destabilization of this conformation.
It may be concluded that the conformational space explorable by the Dbz residue is strongly reduced with respect to C^{α} monoalkylated α-amino acids ${ }^{17,18}$ and it is similar to that of other $\mathrm{C}^{\alpha, \alpha}$-symmetrically disubstituted glycyl residues with bulky acyclic side chains (e.g., Deg ${ }^{6}$ and Dpg ${ }^{8}$ residues).

Solution Conformation.-The solution conformational preferences of three selected Dbz peptides were examined in a solvent of low polarity $\left(\mathrm{CDCl}_{3}\right)$ at two concentrations (ca. 10 and $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$) by using ${ }^{1} \mathrm{H}$ NMR spectroscopy. At $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ concentration the effect on NH resonances
of heating and addition of dimethyl sulphoxide (DMSO) and TEMPO was also examined in order to delineate NH proton solvent accessibilities. The polar solvent DMSO is expected to interact strongly with the exposed amide NH protons via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ hydrogen bonds, thus inducing a downfield shift in their resonances. ${ }^{3,31}$ The paramagnetic free radical TEMPO, on the other hand, is known to perturb the ${ }^{1} \mathrm{H}$ NMR spectra of compounds containing exposed -CONH-groups by broadening the resonances of their NH protons by virtue of nitroxide radical-amide interactions of the $\mathrm{N}-\mathrm{H} \ldots \mathrm{O}-\mathrm{N}=$ type. ${ }^{32}$ As a representative example, Figure 1 shows the complete spectrum of Tfa-Dbz-L-Phe-OMe (2). The NH chemical shifts and temperature coefficients ${ }^{33}$ of the three peptides are listed in Table 3. The effect of the perturbing agents DMSO and TEMPO on the NH resonances of a representative peptide Z-Gly-Dbz-Gly-OBu ${ }^{\text {(}}$ (6), is illustrated in Figure 2. All NH signals are unambiguously identified by virtue of their position (low field, ca. 7.6 ppm , for trifluoroacetamido $\mathrm{NH} ;{ }^{7,9}$ high field, ca 5.2 ppm , for urethane NH^{33}), peak multiplicity, and homonuclear spin-decoupling.

All Dbz NH protons are essentially concentration independent ${ }^{34}$ and exhibit remarkably small variations as the temperature is raised and DMSO and TEMPO are added. Conversely, the L-Phe, Gly, and DBH NH protons are much more sensitive to DMSO and TEMPO; some of them are also sensitive, although not dramatically, to changes in concentration and temperature. On the basis of these data and of the position of the Dbz residues in the dipeptide chains (N -terminal) we are inclined to conclude that in CDCl_{3} solution the incorporation of this $\mathrm{C}^{\alpha, \alpha}$-disubstituted glycine might favour the onset of an intramolecularly \mathbf{H}-bonded C_{5} conformation, if no other effects eventually taking place are responsible for this behaviour.

Other relevant features of the ${ }^{1} \mathrm{H}$ NMR spectra are the following. (a) In Tfa-Dbz-L-Phe-OMe (2) and Tfa-Dbz-GlyDBH (1) two and four aromatic CH protons, respectively, are significantly upfield shifted if compared to the other aromatic protons. We suggest a ring-current effect ${ }^{35}$ between phenyl groups of the benzyl moieties of Dbz, Phe, and DBH residues as a reasonable interpretation of this phenomenon. (b) The chemical shifts of the signals for the methylene group of a Gly

Figure 2. (a) Plot of NH chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectra of Z-Gly-Dbz-Gly-OBu' (6) versus increasing percentages of DMSO in the CDCl_{3} solution (v / v). (b) Plot of the bandwidth of the NH protons of the same peptide versus increasing percentages of TEMPO $(\mathrm{w} / \mathrm{v})$ in $\mathrm{CDCl}_{3}\left(1.1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right)$.

Figure 3. Molecular structure of Tfa-Dbz-Gly-DBH (1) with numbering of the atoms. The intramolecular \mathbf{H}-bonds are shown as dashed lines.
residue at the N -terminus of a Dbz residue are confirmed to appear at values ($3.7-3.8 \mathrm{ppm}$) ca. 0.2 ppm lower than those typically found for Gly-containing compounds (3.9-4.0 ppm). ${ }^{15}$

Crystal-state Conformation.-We have determined by X-ray diffraction the molecular and crystal structures of five terminally blocked Dbz derivatives and small peptides, namely Tfa-Dbz-Gly-DBH (1), Tfa-Dbz-L-Phe-OMe (2), Tfa-Dbz-L-PheOBzl (3), m-ClAc-Dbz-OH (4), and Z-Gly-Dbz-Gly-OH (5). The five molecular structures with the atomic numbering schemes are shown in Figures 3-7, respectively. Table 4 lists bond lengths, bond angles, and torsion angles characterizing the conformation of the Dbz residues.

The Dbz residues in the five compounds adopt an almost ideal intramolecularly \mathbf{H}-bonded fully-extended C_{5}-ring structure. In fact the φ_{i}, ψ_{i} torsion angles ${ }^{25}$ are very close to the expected $\left(180^{\circ}, 180^{\circ}\right)$ values. ${ }^{3}$ The critical intra-ring $\mathrm{N}_{i}-\mathrm{C}_{i}^{\alpha}-\mathrm{C}_{i}^{\prime}$ (τ) bond angles are remarkably compressed with respect to the tetrahedral value, as expected for a pentagonal form. ${ }^{3,36}$ The $\mathrm{O}_{i} \cdots \mathrm{~N}_{i}$ intramolecular separations, ranging from 2.651(8)-

Figure 4. Molecular structure of the Tfa-Dbz-L-Phe-OMe (2) with numbering of the atoms. The intramolecular H -bonds are shown as dashed lines.

Figure 5. Molecular structure of Tfa-Dbz-L-Phe-OBzl (3) with numbering of the atoms. The intramolecular \mathbf{H}-bonds are shown as dashed lines.
$2.520(5) \AA$, and the corresponding $\mathrm{O}_{i} \cdots \mathrm{H}_{i}-\mathrm{N}_{i}$ separations, ranging from 2.157-1.936(64) \AA, are typical for a C_{5} conformation. ${ }^{3,29,37}$ In the case of the three Tfa-protected dipeptides the C_{5} conformation is additionally stabilized by an intramolecular $\mathrm{F}(3) \cdots \mathrm{H}_{1}-\mathrm{N}_{1}$ interaction (${ }^{\circ} \mathrm{C}_{5}$ ' form), the $F(3) \cdots N_{1}$ distances ranging from $2.669(4)-2.633(6) \AA$ and the $\mathrm{F}(3) \cdots \mathrm{H}_{1}-\mathrm{N}_{1}$ distances from $2.287(64)-2.118(59) \AA$. The presence of the three-centre doubly intramolecular (bifurcated) ${ }^{38} \mathrm{H}$-bonded ' C_{5} ', C_{5} conformation is corroborated by the values of the $\mathrm{F}(3)-\mathrm{C}(1)-\mathrm{C}_{0}^{\prime}-\mathrm{N}_{1}$ and $\mathrm{C}(1)-\mathrm{C}_{0}^{\prime}-\mathrm{N}_{1}-\mathrm{C}_{1}{ }^{\alpha}\left(\omega_{0}\right)$ torsion angles, reasonably close to the ideal 0° (cis) and 180° (trans) values, respectively. ${ }^{29}$
The $\chi^{1,1}\left(\mathrm{~N}-\mathrm{C}^{\alpha}-\mathrm{C}^{\beta 1}-\mathrm{C}^{\gamma 1}\right)$ and $\chi^{1,2}\left(\mathrm{~N}-\mathrm{C}^{\alpha}-\mathrm{C}^{\beta 2}-\mathrm{C}^{\gamma 2}\right)$ torsion angles of the Dbz residue are $-70.9(5)^{\circ}$ and $48.7(5)^{\circ}$ for Tfa-Dbz-Gly-DBH (1), $-44.5(5)^{\circ}$ and 49.0(5) ${ }^{\circ}$ for Tfa-Dbz-L-PheOMe (2), $-49.7(5)^{\circ}$ and 40.4(5) ${ }^{\circ}$ for Tfa-Dbz-L-Phe-OBzl (3), $-64.7(6)^{\circ}$ and $48.2(6)^{\circ}$ for m-ClAc-Dbz-OH (4), and $-63.9(9)^{\circ}$ and 52.2(9) ${ }^{\circ}$ for Z-Gly-Dbz-Gly-OH (5).

Figure 6. Molecular structure of m - $\mathrm{ClAc}-\mathrm{Dbz-OH}$ (4) with numbering of the atoms. The intramolecular H -bond is shown as a dashed line.

Figure 7. Molecular structure of Z-Gly-Dbz-Gly-OH (5) with numbering of the atoms. The intramolecular \mathbf{H}-bond is shown as a dashed line.

In Tfa-Dbz-Gly-DBH (1) the peptide bond $\left(\omega_{1}\right)$ is trans $\left[175.3(4)^{\circ}\right],{ }^{39}$ while the C-terminal acylhydrazido - $\mathrm{CO}-\mathrm{NH}-$
bond $\left(\omega_{2}\right)$ is cis, $-1.4(7)^{\circ}{ }^{.8}$ The Gly residue is partially extended $\left[\varphi_{2}=-121.8(5)^{\circ}, \psi_{2}=-165.9(4)^{\circ}\right]$. In the DBH moiety the torsion angles about the $\mathrm{N}(1)-\mathrm{N}(2)$ bond have values of $127.2(5)^{\circ}$ and $-112.5(5)^{\circ}$, and the two benzyl groups assume the (t, g^{-}) conformation, the $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}^{\prime}(2)-\mathrm{C}^{\prime}(3)$ and $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$ torsion angles being $170.4(4)^{\circ}$ and $-72.7(5)^{\circ}$, respectively. ${ }^{8}$ As expected for an acylhydrazido group, ${ }^{8}$ the $\mathrm{N}(1)$ atom has sp^{2} character [the $\mathrm{C}_{2}^{\prime}-\mathrm{N}(1)-\mathrm{N}(2)$ bond angle is $122.2(4)^{\circ}$], while the $\mathrm{N}(2)$ atom has sp^{3} character [the $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(2)$ and $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}^{\prime}(2)$ bond angles are $108.5(3)^{\circ}$ and $108.3(4)^{\circ}$, respectively.

In Tfa-Dbz-L-Phe-OMe (2) the peptide $\left(\omega_{1}\right)$ and ester $\left(\omega_{2}\right)^{40}$ bonds are both trans [$-179.4(4)^{\circ}$ and $172.9(5)^{\circ}$, respectively]. The L -Phe residue is semi-extended $\left[\varphi_{2}=-96.0(5)^{\circ}, \psi_{\mathrm{T}}=\right.$ $\left.162.0(4)^{\circ}\right]$. The conformation of the benzyl side chain of the L -Phe residue is g^{-}, the χ_{2}^{1} torsion angle being $-64.7(6)^{\circ}$. $36,41,42$ Also, in the dipeptide benzyl ester analogue (3) the peptide $\left(\omega_{1}\right)$ and ester $\left(\omega_{2}\right)$ bonds are both trans [$-179.2(4)$ and $174.0(5)^{\circ}$, respectively]. Again, the L-Phe residue is semi-extended $\left[\varphi_{2}=-93.9(5)^{\circ}, \psi_{\mathrm{T}}=170.8(4)^{\circ}\right]$ and the benzyl side chain takes the g^{-}conformation $\left[\chi_{2}^{1}=\right.$ $\left.61.9(6)^{\circ}\right]$. The torsion angle characterizing the conformation of the C-terminal benzyl ester group, $\mathrm{C}_{2}^{\prime}-\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$, has a value of -106.9(7) ${ }^{\circ}{ }^{40}$

In m - $\mathrm{ClAc}-\mathrm{Dbz-OH}$ (4) the amide bond (ω_{0}) is trans, $-171.1(4)^{\circ}$, but the $\mathrm{Cl}-\mathrm{C}(1)-\mathrm{C}_{0}^{\prime}-\mathrm{N}_{1}$ torsion angle is $116.4(5)^{\circ}$, thus precluding the onset of the ' C_{5} ' form. The $\mathrm{C}_{1}^{\prime}-\mathrm{O}(1)$ and $\mathrm{C}_{1}^{\prime}-\mathrm{O}_{1}$ bond lengths are $1.318(5)$ and $1.198(6) \AA$, respectively.

In Z-Gly-Dbz-Gly-OH the urethane $\left(\omega_{0}\right)^{43}$ group and the peptide (ω_{1} and ω_{2}) groups are all trans, but the ω_{2} torsion angle deviates markedly from planarity $\left[170.5(8)^{\circ},-174.3(8)^{\circ}\right.$, and $-165.5(7)^{\circ}$, respectively]. The Gly residues are both semiextended $\left[\varphi_{1}=-80.3(11)^{\circ}, \psi_{1}=175.1(8)^{\circ} ; \varphi_{3}=-96.6(10)^{\circ}\right.$, $\left.\psi_{\mathrm{T}}=176.6(8)^{\circ}\right]$. The torsion angles, characterizing the conformation of the benzyloxycarbonyl N^{α}-protecting group [θ^{1}, θ^{2}, and θ^{3}, about the $\mathrm{C}_{0}^{\prime}-\mathrm{O}_{\mathrm{u}}, \mathrm{O}_{\mathrm{u}}-\mathrm{C}(7)$, and $\mathrm{C}(7)-\mathrm{C}(6)$ bonds, respectively], ${ }^{43}$ are $-175.3(10)^{\circ},-98.4(12)^{\circ}$, and $54.5(14)^{\circ}$, respectively. The $\mathrm{C}_{3}^{\prime}-\mathrm{O}(1)$ and $\mathrm{C}_{3}^{\prime}-\mathrm{O}_{3}$ bond lengths are $1.290(10)$ and $1.205(9) \AA$, respectively.

Further, although indirect, support for the occurrence of the intramolecularly H -bonded conformation in these five compounds is given by the observation that the pertinent $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ groups are not involved in the intermolecular H -bonding schemes ${ }^{6,8}$ (with one exception, see below). In fact, in Tfa-Dbz-Gly-DBH (1) methanol solvate we observe the formation of two intermolecular H-bonds, (acylhydrazido) $\mathrm{N}(1) \ldots \mathrm{O}_{2}$ (acylhydrazido) ($1-x, 2-y, 1-z$) and $\mathrm{O}_{\mathrm{M}} \cdots \mathrm{O}_{0}$ (amide) $(-x, 2-y, 1-z)$. The two heteroatomic distances are $2.906(5){ }^{44,45}$ and $2.800(6) \AA{ }^{46,47}$ respectively. The N_{2} atom is not involved in the H -bonding scheme.

The packing mode of both Tfa-Dbz-L-Phe-OMe (2) and Tfa-Dbz-L-Phe-OBzl (3) molecules is characterized by a (peptide) $\mathrm{N}-\mathrm{H} \ldots \mathrm{O}=\mathrm{C}$ (amide) intermolecular H -bond [the $\mathrm{N}_{2} \ldots \mathrm{O}_{0}$ $(-x, y+1 / 2,-1 / 2-Z)$ distance in (2) is $3.021(5) \AA$ and the $\mathrm{N}_{2} \ldots \mathrm{O}_{0}(-x, y-1 / 2,-3 / 2-z)$ distance in (3) is 3.041(5) $\AA \AA$ forming rows along the y-direction.

The only intermolecular H -bond in the mode of packing of the m - $\mathrm{ClAc}-\mathrm{Dbz-OH}$ (4) molecules is seen between the (carboxylic acid) $\mathrm{O}-\mathrm{H} \ldots \mathrm{O}=\mathrm{C}$ (amide) groups $\left[\right.$ the $\mathrm{O}(1) \ldots \mathrm{O}_{0}(x$, $y, 1+z$) distance is $2.577(4) \AA$], forming rows along the y direction.

A more complex intermolecular H-bonding pattern occurs in the crystals of Z-Gly-Dbz-Gly-OH (5). The (peptide) $\mathrm{C}_{2}^{\prime}=\mathrm{O}_{2}$ group plays the role of a double acceptor, ${ }^{38}$ of the intramolecular H -bond with the (peptide) $\mathrm{N}_{2}-\mathrm{H}_{2}$ group (see above) and of an intermolecular H -bond with the (carboxylic acid) $\mathrm{O}-\mathrm{H}$ group [the $\mathrm{O}(1) \cdots \mathrm{O}_{2}(1 / 2-x, 3 / 2-y, 1-z)$ separation is $2.661(10) \AA]$. In addition, rows along the y-direction

Table 4. Bond distances $/ \AA$, bond angles $/{ }^{\circ}$ and torsion angles $/{ }^{\circ}$ characterizing the ${ }^{\circ} \mathrm{C}_{5}$ ', C_{5} and C_{5} conformations of Tfa-Dbz-Gly-DBH (1) methanol solvate, Tfa-Dbz-L-Phe-OMe (2), Tfa-Dbz-L-Phe-OBzl (3), m-ClAc-Dbz-OH (4), and Z-Gly-Dbz-Gly-OH (5).

			(1)	(2)	(3)	(4)	(5)
${ }^{\text {C }}$, ${ }^{\prime}$	$\mathrm{F}(3)-\mathrm{C}(1)-\mathrm{C}^{\prime}{ }_{0}-\mathrm{N}_{1}$	$\left(\omega_{0}\right)$	0.9(7)	-4.4(8)	-3.9(6)		
	$\mathrm{C}(1)-\mathrm{C}^{\prime}{ }_{0}-\mathrm{N}_{1}-\mathrm{C}^{\alpha}{ }_{1}$		-171.3(4)	178.9(5)	-165.6(4)		
	$\mathrm{F}(3) \cdots \mathrm{N}_{1}$		2.669(4)	2.633(6)	$2.634(5)$		
	$\mathrm{F}(3) \cdots \mathrm{H}_{1}-\mathrm{N}_{1}$		2.238	2.118(59)	2.287(64)		
C5	$\mathrm{C}_{0}^{\prime}-\mathrm{N}_{i}-\mathrm{C}^{\alpha}-\mathrm{C}^{\prime}{ }_{i}{ }^{\text {a }}$	$\left(\varphi_{i}\right)$	177.9(4)	179.7(4)	175.9(4)	-179.2(5)	-178.9(8)
	$\mathrm{N}_{i}-\mathrm{C}^{\boldsymbol{a}}{ }_{1}-\mathrm{C}^{\prime}-\mathrm{N}_{\text {i+1 }}$	($\boldsymbol{\psi}_{i}$)	176.4(4)	178.2(4)	180.0(4)	$-173.6(4)^{\text {b }}$	179.3(7)
	$\mathrm{N}_{\mathrm{i}}-\mathrm{C}^{a}-\mathrm{C}_{i}$	(τ_{i})	104.8(2)	103.5(4)	103.4(3)	104.6(4)	105.6(7)
	$\mathrm{O}_{\mathbf{i}} \cdots \mathrm{N}_{i}$		$2.587(4)$	2.520 (5)	2.542(5)	2.610 (4)	$2.651(8)$
	$\mathrm{O}_{i} \cdots \mathrm{H}_{i}-\mathrm{N}_{i}$		2.097	2.072(57)	1.936(64)	2.130	2.157

${ }^{a}$ The i residue refers to Dbz. ${ }^{b} \mathrm{~N}_{i}-\mathrm{C}^{a}-\mathrm{C}_{i}^{\prime}-\mathrm{O}(1)$.
are formed via intermolecular H -bonds between (peptide) $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (peptide) groups and (urethane) $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (carboxylic acid) group. The $\mathrm{N}_{3} \cdots \mathrm{O}_{1}(1 / 2-x, 1 / 2+y$, $3 / 2-z)$ and $\mathrm{N}_{1} \cdots \mathrm{O}_{3}(x, 1-y, z)$ distances are 2.856(11) and $3.061(10) \AA$, respectively.

Conclusions

The results of the present analysis are in favour of the thesis that the Dbz residue, with symmetrically disubstituted, bulky side chains, preferentially adopts in the crystal state the intramolecularly H-bonded C_{5}-ring structure, in the $\left(\varphi=180^{\circ}\right.$, $\psi=180^{\circ}$) region of the conformational space; with regard to the solution-preferred conformation the same conclusion might be assumed, although in this case the evidence is less convincing than that obtained in the crystal state. Therefore, the incorporation of a Dbz residue into a bioactive linear peptide might result in a significant stabilization of the fully-extended conformation. However, no detailed conformational analysis has been performed on the Dbz-containing analogues of the bioactive peptides synthesized so far. ${ }^{10,12,14}$

In previous studies from our laboratories it has been shown that the most populated conformation for the Deg^{5-7} and Dpg ${ }^{5,8,9}$ residues, also characterized by symmetrically disubstituted, bulky side chains, is the C_{5}-conformation. On the other hand, Aib, the prototype of this family of $\mathrm{C}^{\alpha, \alpha}$ disubstituted achiral residues, strongly prefers $3_{10} / \alpha$-helical structures. ${ }^{3}$ Therefore, from this study it is confirmed that in the crystal state and possibly also in solution the fully-extended conformation becomes more stable than the helical structures when both side-chains C^{β} atoms are symmetrically substituted but not interconnected in a cyclic system.

Acknowledgements

One of the authors (H. L. S. M.) would like to acknowledge the Instituto Nacional de Investigacão Cientifica (Portugal) for financial support.

References

1 A. F. Spatola, in 'Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins,' vol. 7, ed. B. Weinstein, Dekker, New York, 1983, p. 267.
2 A. Aubry, G. Boussard, M. T. Cung, M. Marraud, and B. Vitoux, J. Chim. Phys. Phys.-Chim. Biol., 1988, 85, 345.
3 C. Toniolo and E. Benedetti, ISI Atlas of Science: Biochemistry, 1988, 1, 225.
4 W. F. DeGrado, Adv. Protein Chem., 1988, 39, 51.
5 G. Valle, G. M. Bonora, C. Toniolo, P. M. Hardy, M. T. Leplawy, and A. Redlinski, J. Chem. Soc., Perkin Trans. 2, 1986, 885.

6 E. Benedetti, V. Barone, A. Bavoso, B. Di Blasio, F. Lelj, V. Pavone, C. Pedone, G. M. Bonora, C. Toniolo, M. T. Leplawy, K. Kaczmarek, and A. Redlinski, Biopolymers, 1988, 27, 357.
7 C. Toniolo, G. M. Bonora, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, V. Barone, F. Lelj, M. T. Leplawy, K. Kaczmarek, and A. Redlinksi, Biopolymers, 1988, 27, 373.
8 E. Benedetti, C. Toniolo, P. M. Hardy, V. Barone, A. Bavoso, B. Di Blasio, P. Grimaldi, F. Lelj, V. Pavone, C. Pedone, G. M. Bonora, and I. Lingham, J. Am. Chem. Soc., 1984, 106, 8146.
9 G. M. Bonora, C. Toniolo, B. Di Blasio, V. Pavone, C. Pedone, E. Benedetti, I. Lingham, and P. M. Hardy, J. Am. Chem. Soc., 1984, 106, 8152.
10 G. C. Barrett, P. M. Hardy, T. A. Harrow, and H. N. Rydon, J. Chem. Soc., Perkin Trans. 1, 1972, 2634.
11 H. L. Maia, B. Ridge, and H. N. Rydon, J. Chem. Soc., Perkin Trans. 1, 1973, 98.
12 P. M. Hardy, A. Goldsmith, and R. Cotton, in 'Peptides 1984,' ed. U. Ragnarsson, Almqvist and Wiksell, Stockholm, 1984, p. 121.
13 R. Cotton, P. M. Hardy, and A. E. Langran-Goldsmith, Int. J. Pept. Protein Res., 1986, 28, 230.
14 R. Cotton, P. M. Hardy, and A. E. Langran-Goldsmith, Int. J. Pept. Protein Res., 1986, 28, 245.
15 A. M. Freitas and H. L. S. Maia, in 'Peptides 1988,' eds. G. Jung and E. Bayer, de Grutyer, Berlin, 1989, p. 13.

16 P. M. Hardy and I. N. Lingham, Int. J. Pept. Protein Res., 1983, 21, 406.

17 F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga, J. Phys. Chem., 1975, 79, 2361.

18 G. Némethy, M. S. Pottle, and H. A. Scheraga, J. Phys. Chem., 1983, 87, 1883.
19 S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, J. Comput. Chem., 1986, 7, 230.
20 V. Barone, F. Fraternali, P. L. Cristinziano, F. Lelj, and A. Rosa, Biopolymers, 1988, 27, 1673.
21 A. T. Hagler, E. Huler, and S. Lifson, J. Am. Chem. Soc., 1979, 96, 5319.

22 P. K. Weiner, and P. A. Kollman, J. Comput. Chem., 1981, 2, 287.

23 F. Fraternali, Doctorate Thesis, University of Naples, 1987.
24 F. Lelj, V. Barone, and P. L. Cristinziano, to be published.
25 IUPAC-IUB Commission on Biochemical Nomenclature, Biochemistry, 1970, 9, 3471.
26 Routine No. VA11A, Harwell Library, AERE, UK.
27 P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Woolfson, 'MULTAN 80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data,' Universities of York, England and Louvain, Belgium, 1980.
28 G. M. Sheldrick, 'SHELX S-86' in 'Crystallographic Computing 3,' eds. G. M. Sheldrick, C. Krüger, and R. Goddard, Oxford University Press, Oxford, 1985, p. 175.
29 C. Toniolo, CRC Crit. Rev. Biochem., 1980, 9, 1.
30 M. Ohnishi and D. W. Urry, Biochem. Biophys. Res. Commun., 1969, 36, 194.
31 K. D. Kopple, M. Ohnishi, and A. Go, Biochemistry, 1969, 8, 4087.
32 K. D. Kopple and T. J. Schamper, J. Am. Chem. Soc., 1972, 94, 3644.

33 G. M. Bonora, C. Mapelli, C. Toniolo, R. R. Wilkening, and E. R. Stevens, Int. J. Biol. Macromol., 1984, 6, 179.
34 M. Iqbal and P. Balaram, Biopolymers, 1982, 21, 1427.
35 L. M. Jackman and S. Sternhall, in 'Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd edn., International Series in Organic Chemistry, vol. 10, Pergamon, Oxford, UK, 1969.
36 T. Ashida, Y. Tsunogae, I. Tanaka, and T. Yamane, Acta Crystallogr., Sect. B, 1987, 43, 212.
37 R. Taylor, O. Kennard, and W. Versichel, J. Am. Chem. Soc., 1983, 105, 5761.
38 R. Taylor, O. Kennard, and W. Versichel, J. Am. Chem. Soc., 1984, 106, 244.
39 E . Benedetti in 'Chemistry and Biochemistry of Amino Acids, Peptides and Proteins,' vol. 6, ed. B. Weinstein, Dekker, New York, 1982, p. 105.
40 W. B. Schweizer and J. D. Dunitz, Helv. Chem. Acta, 1982, 65, 1547.

41 E. Benedetti, G. Morelli, G. Némethy, and H. A. Scheraga, Int. J. Pept. Protein Res., 1983, 22, 1.
42 R. O. Gould, A. M. Gray, P. Taylor, and M. D. Walkinshaw, J. Am. Chem. Soc., 1985, 107, 5921.
43 E. Benedetti, C. Pedone, C. Toniolo, M. Dudek, G. Némethy, and H. A. Scheraga, Int. J. Pept. Protein Res., 1983, 21, 163.

44 C. Ramakrishnan and N. Prasad, Int. J. Protein Res., 1971, 3, 209.

45 R. Taylor, O. Kennard, and W. Versichel, Acta Crystallogr., Sect. B, 1984, 40, 280.
46 I. D. Brown, Acta Crystallogr., Sect A, 1976, 32, 24.
47 J. Mitra and C. Ramakrishnan, Int. J. Pept. Protein Res., 1977, 9, 27.

Paper 0/00405G
Received 25th January 1990
Accepted 13th April 1990

[^0]: * For details, see 'Instructions for Authors (1990),' J. Chem. Soc., Perkin Trans. 2, in the January issue.

